
A b out u sin g U s er Ty p e in O RM

This example simulate how customized type can be use in VP generated ORM layer source code.
Assume you have the following model

The MyString type is a wrapper of String which having customized toString method. And the MyEnum
is an customized enumerated type. We map MyString to varchar(255) and MyEnum to varchar(1) in
database.

Both MyString and MyEnum having <<ORM User Type>> stereotype. This stereotype indicate type
used in CustomTable are user type instead of primitive types.

When generate code, we will generate 2 extra classes, MyStringUserType and MyEnumUserType
which implements org.hibernate.usertype.UserType. The MyStringUserType and
MyEnumUserType are the linkage between persistent datatype and your custom datatype. Only the
class structure for MyStringUserType and MyEnumUserType will be generated and no detail
implementation included (since it is up to your decision on how it should behave).

In the mapping file, it will showing the column is map to MyStringUserType and MyEnumUserType.

The MyStringUserType and MyEnumUserType mainly handle how the data being load and save. You
must implement the following methods in order to make it work

● public Object nullSafeGet(ResultSet resultSet, String[] names, Object
owner) throws HibernateException, SQLException

● public void nullSafeSet(PreparedStatement statement, Object value, int
index) throws HibernateException, SQLException

● public Class returnedClass()
● public int[] sqlTypes()

By implementing MyStringUserType and MyEnumUserType, you will able to save and load data
through your custom types.

* Please note that we will not create/generate MyString and MyEnum for you.

